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Abstract Traditionally, decisions on the use of machinery are
based on previous experience, historical data and common sense.
However, carrying out an effective predictive maintenance plan,
information about current machine conditions must be made
known to the decision-maker. In this paper, a new method of
obtaining maintenance information has been proposed. By inte-
grating traditional reliability modelling techniques with a real-
time, online performance estimation model, machine reliability
information such as hazard rate and mean time between failures
can be calculated. Essentially, this paper presents an innovative
method to synthesise low level information (such as vibration
signals) with high level information (like reliability statistics) to
form a rigorous theoretical base for better machine maintenance.

Keywords Cerebellar model articulation controller · Neural
network · Predictive maintenance · Weibull proportional hazards
model

1 Introduction

It is well known that 99% of machine failures are preceded
by some indicators [1]. Therefore, condition-based predictive
maintenance is probably the most economical way to maintain
machinery. Its idea is to allow the determination of machinery
health in a real-time, online fashion. As such, faults can be pre-
dicted before they take place. Maintenance can then be scheduled
as needed. Reported benefits of predictive maintenance include
reduced downtime, lower maintenance costs, and reduction of
unexpected catastrophic failures.

The objective of this paper is to combine traditional relia-
bility modelling methods with vibration-based monitoring tech-
niques and artificial neural network technologies in an integrated
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system to determine the health status of machinery, namely, cere-
bellar model articulation controller neural network-based ma-
chine performance estimation model (CMAC-PEM). In order to
verify our methodology, the Weibull proportional hazards model
(WPHM) has also been implemented. Additionally, a bearing
deterioration experiment was conducted. Its data were used to
test both the CMAC-PEM and the WPHM methodologies. Their
comparison results and analyses are given in this paper.

2 Literature review

There are three main types of maintenance, namely improve-
ment maintenance, preventive maintenance, and corrective main-
tenance. The efforts of improvement maintenance are to reduce
or eliminate the need for maintenance entirely. By contrast, cor-
rective maintenance is the repair actions executed after failure
occurrence and preventive maintenance denotes all actions in-
tended to keep equipment in good operating condition and to
avoid failures [2].

Condition-based maintenance (CBM) is dynamic preventive
maintenance in practice. Markov and semi-Markov models have
been the preferred approach in simulation and evaluation of
CBM [3–5]. Other approaches, like Monte Carlo modelling [6,
7] or an artificial intelligence approach [8], have also been pro-
posed by several researchers.

As a method of modelling the process of age-dependent fail-
ures, the concept of hazard modelling is well known in main-
tenance literature. The proportional hazards model (PHM), de-
veloped by Cox [9], extends the traditional hazard model to
include correlative information supplied by diagnostic variables.
It has been widely used in medical diagnostics, and was first ap-
plied to engineering reliability problems by Jardine and Ander-
son [10]. Kobbacy et al. [11, 12] proposed a heuristic approach
for implementing a proportional hazards model to schedule the
next maintenance interval on the basis of the equipment’s full
condition history.

Albus first proposed CMAC [13, 14]. It is capable of very fast
learning, and contains certain features of interpolation and ap-
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proximation [15]. It can learn nonlinear relationships from a very
broad category of functions, and converges in a small number
of training iterations. Many researchers have applied CMAC to
find the solutions of various problems. Lee and Kramer [16]
developed a pattern discrimination model based on a CMAC net-
work to analyse robot system degradation. Basically, a CMAC
network is defined by a series of mappings, which then forms
a special memory association table. It is a supervised learning
network, so, in the training stage, the desired output of each input
vector must be given. Training consists of adjusting the values in
the weight table based on the error between their present output
and the desired output.

Vibration analysis has been widely accepted as a most reli-
able technique for predicting machinery problems [17–19]. Fur-
thermore, vibration trending is a good way to translate a signal
into a measure for comparison of machinery health status. Sev-
eral trending techniques have been developed and studied in the
literature [20–22]. In this paper, vibration signals are used for
machine condition monitoring.

3 Condition-based reliability modelling system

For predictive maintenance, the determination of timing for
maintenance is crucial. It obviously relies on instruments with
specific sensors to monitor operations, and to analyse these sig-
nals by comparing them with baseline data. Lack of quantitative
methods to describe the overall machine condition is the bottle-
neck of the problem. Even though sensory readings are taken,
it is hard to known how “good” or “bad” the machine is, and
how long it can run. All these problems lead to the development
of a condition-based reliability modelling system, CMAC-PEM.
With sensor readings, the CMAC fuses the processed informa-
tion and estimates machine reliability measures. These measures
are then used to form a reliability model for the current machine
condition, and then important maintenance information can be
derived easily.

3.1 Machine reliability modelling

The random variable used to quantify machine reliability is the
“time to failure” denoted by T . The reliability function R(t) of
a system is defined in Eq. 1:

R(t) = Pr[T > t]
= 1−Pr[T ≤ t]
= 1− FT (t). (1)

Many parametric failure models have been proposed to describe
the behaviour of machine degradation, such as the Poisson, ex-
ponential, Weibull and log-normal distributions. The Weibull
model is the most popular one because it can accommodate sev-
eral types of behaviour, such as infant mortality and the various
aging defects found in a “bath-tub curve” [23]. The probability

density function of a Weibull distribution is defined in Eq. 2:
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where β is the shape or slope parameter, θ is the scale param-
eter and c is the location constant. Once the underlying model
of a system is defined, we can easily derive the other reliability
functions. As shown in Eq. 3, where the expected value E[T ] is
also called “mean time between failures” (MTBF), and Γ(x) is
the well-known gamma function. From Eq. 3, R(t) can be rear-
ranged in the form shown in Eq. 4:
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If the estimates of R(t) can be obtained, validation of the
model may be accomplished by computing the linear regression
line of ln(ln(1/R(t))) with respect to ln(t − c) as shown in Eq. 4.
The slope of the linear regression line gives β and the intercept
on the Y-axis gives θ . The value of c is usually zero, but could
take different values if ln(ln(1/R(t))) values have some kind of
curvature rather than a straight line. In such cases, a suitable
value for c must be chosen in order to fit a straight line. The
chi-square test may be used to validate the model fit for a given
confidence level.

After β, θ and c are obtained, h(t), MTBF and Var[T ] can be
calculated through Eq. 3. These values will provide useful guide-
lines for further maintenance scheduling.

3.2 CMAC performance estimation model

The problem at hand is how to calculate the reliability measure,
R(t). Since CMAC can provide a very good estimate of machine
degradation levels [16], it is assumed that the machine degrada-
tion levels estimated from CMAC are equivalent to the machine’s
reliability measures. A unique CMAC feature, the CMAC confi-
dence level, explained in a later section justifies this assumption.
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Therefore, given the reliability measures and the well-defined re-
liability equations described previously, important maintenance
information such as h(t), MTBF, and Var[T ] can be computed.
In this paper, vibration signal trending techniques such as root
mean square (RMS), matched filter root mean square (MFRMS)
and Kurtosis were chosen to use as inputs to the CMAC-PEM
system.

To justify the equivalence between CMAC outputs and reli-
ability measures, a special feature of the CMAC algorithm must
be investigated and implemented. According to research by Lee
and Kramer [16], one can calculate the percentage of shared-
weight cells in a trained CMAC when a test vector is presented
to the CMAC. This percentage value, called the “confidence
level”, represents the closeness between the test vector and the
training vector. The confidence value is regarded as the level of
behavioural change of the system being monitored. It is com-
puted as follows:

Confidence Level = (Repeatable_Weight_Location_Count)/K
(5)

where K is the number of quantising functions, which is ac-
tually the total number of cells used for storing the distributed
weights of any input vector in a CMAC network. The Repeat-
able_Weight_Location_Count is the number of shared cells be-
tween the trained CMAC and a test vector.

In the context of machine condition monitoring, the input
vectors to CMAC are readings from sensors, which are formed
by vibration trending indices. If we train a CMAC network, using
the readings from the normal condition of a machine, then in the
CMAC test stage, the confidence value may be seen as the ma-
chine’s current health index compared to its normal condition.
Hence, using this percentage deviation to represent a machine’s
reliability measure is a logical consequence. In other words,
a low confidence level means the machine has deviated from the
normal condition, and requires close monitoring. These confi-
dence values are therefore treated as machine reliability mea-
sures in this paper.

3.3 Weibull proportional hazards model: a validation tool

A diagnostic variable in PHM is defined as a measurement re-
flecting conditions critical to its system performance, such as the
level of machine vibration in our case. In this research, PHM
was implemented as a validation tool to verify the results from
CMAC-PEM.

The assumption of PHM is that the hazard rate of a system
is the product of a baseline hazard rate function h0(t), depending
on system age, and a positive function Φ depending only on the
values of a set of diagnostic variables. Thus, if z is the vector of
diagnostic variables, the hazard rate function is

h (t, z) = h0 (t) Φ (z) . (6)

The most common form for Φ(z) is

Φ (z) = exp (γ · z) . (7)

Note that γ · z is the dot product of the vectors γ and z. In Eq. 7 γ

represents the coefficients vector of the separate diagnostic vari-
ables used in the model. Cox suggests estimating the parameters
of Φ(z) and γ by maximising an expression he calls conditional
likelihood or partial likelihood [9]. In the approach taken by Cox,
the baseline hazard rate is estimated directly from empirical data.
In the work of Jardine and Anderson [10], the underlying base-
line hazard rate is assumed to be Weibull distribution, and the
empirical data is used to estimate the shape and scale parameters
of the Weibull distribution alone with the coefficients of the diag-
nostic variables [24]. In our paper, since the Weibull assumption
was applied, a Weibull-based hazard rate was utilised as a base-
line hazard rate.

The hazard rate of the Weibull distribution is given by Eq. 8:
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where β is the shape parameter and θ is the scale parameter. The
Weibull proportional hazards model is

λ(t, z) = β
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Thus, the partial likelihood function for WPHM is specified as
Eq. 10 [24]:
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It is numerically more tractable to utilise the log of Eq. 10 for de-
termining the optimal parameters. Therefore the log-likelihood,
as shown in Eq. 11, is the quantity actually maximised.
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Here, N is the total number of running times available. The max-
imum likelihood estimate is the set of parameter values, which
maximises the log-likelihood function.

Once calculated, by substituting the values of parameters β,
θ , and γ into Eq. 9, the proportional hazard rate can be found.
The cumulative hazard rate H(t) may then be calculated as
follows:

H (t) =
t∫

0

h (t) dt. (12)

Then, the reliability measures, R(t), may be calculated as

R (t) = exp (−H (t)) . (13)
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WPHM provides another way to calculate the Weibull pa-
rameters, which may allow for comparison of its estimates to the
results from CMAC-PEM.

4 Analysis of the bearing deterioration process

As shown in Fig. 1, a bearing deterioration experiment was con-
ducted to test the CMAC-PEM methodology. During the experi-
ment, an extra constant load was added to a test bearing using
a turnbuckle, and thereby driving the bearing housing downward.
This created a constant stress on the top of the test bearing to
accelerate the bearing’s deterioration process.

A bearing with a single point inner-race defect was created
and used as the test bearing. The motor was turned on and ran
continuously while the experiment was proceeding. Vibration
signals, collected in the time waveform from the test bearing,
were saved into a personal computer for later analysis. Data sets
were collected four to five times per day. The entire running time
of the experiment was about one week.

After the data collection stage, a band pass filter was used to
extract the most critical information from the raw data about the
inner race deterioration. The band width of the filter is specified
to be between 1300 and 2000 Hz, which is based on the bearing
geometry and the test stand fundamental shaft speed. By do-
ing so, the vibration trending indices of the band-passed-filtered
signals are able to better indicate the growth of the inner race de-
fect. Figure 2 displays the plot of trending indices from the band
pass filtered signals. As can be seen from Fig. 2, the trending in-
dices from the extracted signals show an increasing pattern. In
addition, when the increasing pattern of each index in Fig. 2 is
compared, the trend of RMS and MFRMS indices appeared to be
better than that of Kurtosis. In other words, RMS and MFRMS
are more consistent with the physical change inside the bearing,
and are able to perform as more dominant factors in testing and
training a CMAC network.

Based on the procedure of the CMAC-PEM, the data shown
in Fig. 2 were used to train and test a CMAC network. First,
we defined the data sets collected at the beginning of the ex-
periment as the normal condition of the test stand. They were
used to train a CMAC network. The remaining data sets were
used as test vectors for the trained CMAC. The test results are

Fig. 1. Bearing test stand

shown in CMAC-R(t) curve of Fig. 3, where the Y-axis rep-
resents the estimated test stand confidence level and X-axis
represents the running time. As expected, Fig. 3 depicted a de-
creasing trend since the test stand confidence level was declin-
ing due to the growing inner race defect. Using CMAC-R(t)
curve as the CMAC estimated reliability measures, the under-
lying failure model, the Weibull model, and its model parame-
ters β, θ , and c, could be obtained. Table 2 lists the computed
results.

Once we have these parameters, the Weibull model reliabil-
ity curve can be drawn as shown in the Estimated-R(t) curve
of Fig. 3. The chi-square test for the estimated parameters was
performed, which validated a significant model fit for a 95% con-
fidence level. In Fig. 3, the Estimated-R(t) curve indicates that
the predicted probability of the machine surviving over 150 h is
very close to zero. In fact, during the experiment, the test stand
stopped running due to a broken shaft and the experiment was
terminated at about 140 running hours.

To verify the results of CMAC-PEM, the same bearing de-
terioration data set was used again. The WPHM method was
formed to fit the data set. The coefficients of the model (β, θ , and
γ ) may be found via maximum likelihood estimation.

Fig. 2. Vibration trending indices plot of the test bearing band pass filtered
signals

Fig. 3. CMAC reliability curve of the inner race defect bearing and calcu-
lated Weibull model reliability curve
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Table 1. Summary of Weibull proportional hazards modelling for the bearing data

Concomitant parameters Weibull parameters

RMS (γ 1) Kurtosis (γ 2) MFRMS (γ 3) β θ LL∗

Model 1 0.9090 −0.0985 1.3501 2.0961 50.1005 −19.201
Model 2 0.8860 — 1.2951 2.0820 50.0987 −19.265
Model 3 1.3260 — — 1.8874 51.7405 −21.695

∗Log likelihood

The Weibull proportional hazards model is fitted to the data
and the model parameters are calculated through the LIFEREG
routine in SAS [25].

The model may be refitted in order to improve the parameter
estimates by dropping the non-statistical-significant diagnostic
variables.

Choose the estimated parameters from the best-fitted model.
Calculate the necessary reliability functions and compare results
with estimates from the CMAC-PEM method.

Since we used three diagnostic variables (RMS, Kurtosis and
MFRMS), the first model derived was

h(t, z) = β

θ

(
t

θ

)β−1

exp(γ · z)

= exp [γ1(RMS)+γ2(Kurtosis)+γ3(MFRMS)]

× β

θ
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t

θ
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(14)

where γl, γ2 and γ3 are coefficients of the three trending indices
and t is the running time variable. The analysis results of Model 1
shows that the chi-square statistic for parameter γ2 is not signifi-
cantly larger than its approximate standard error. Therefore, the
corresponding concomitant variable of γ2 was removed from the
model.

The second model that removed the Kurtosis variable was
then refitted to the data. The second model is

h(t, z) = exp [γ1 (RMS)+γ3 (MFRMS)]
β

θ

(
t

θ

)β−1

. (15)

Table 1 summarises the WPHM results for the test bearing
data. From the table, one can see that although the Kurtosis vari-
able has been removed from the first model to form the second
model, the estimated parameters are not significantly different
between Model 1 and Model 2. Also, the values of log likeli-
hood (LL) are shown to be slightly reduced, from −19.201 to

Table 2. Weibull parameter estimates for CMAC-PEM and WPHM

Parameter CMAC-PEM estimate WPHM estimate∗

β 2.1765 2.0820
θ 44.1968 50.0987
c 0 0

∗From model 2

−19.265. These indicate that Kurtosis is a redundant variable in
the model. In other words, RMS and MFRMS are the dominant
variables. This conclusion is consistent with the findings shown
in Fig. 2, where the RMS and MFRMS plots show better increas-
ing trends that reflect the physical changes inside the bearing
than that of Kurtosis.

When both Kurtosis and MFRMS indices are not in the
model, the log likelihood value drops 2.43 points from −19.265
in Model 2 to −21.695 in Model 3, indicating that the parameter
estimation does not improve by dropping MFRMS. Also, from
Model 2 to Model 3, the parameters change significantly (see
γ1 in Table 1), showing the importance of MFRMS index in the
model. Therefore, the best model to fit the test stand data would
be Model 2.

There are two purposes of implementing WPHM. The first is
to investigate the individual influence of each diagnostic variable
in the model, which has been performed by the model fitting.
The second is to verify the proposed CMAC-PEM methodol-
ogy for machine reliability estimation. Table 2 lists the Weibull
parameters estimated from Model 2 and CMAC-PEM. For the
slope parameter, β, the two estimates are only slightly differ-
ent. For the scale parameter, θ , the estimate from CMAC-PEM
is 44.1968, which is less than the 50.0987 from WPHM. Note
that in WPHM RMS and MFRMS these are variables – not con-
stants. In order to plot the curves, extreme diagnostic variable
values were specified. Fig. 4 displays the original CMAC esti-
mated reliability measures and two boundary reliability curves.
The U-WPHM-R(t) curve was obtained by assuming the RMS
and MFRMS values were from the initial state of the test stand.

Fig. 4. CMAC reliability curve and two boundary WPHM reliability curves
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In contrast, the L-WPHM-R(t) curve was calculated by using
the last-state RMS and MFRMS readings, which were the values
taken before the shaft broke. These two curves represent the
worst and best case reliability curves for the test stand used in
the WPHM method. Note that most CMAC estimated reliability
values are located inside the area covered by the two boundary
WPHM reliability curves. By examining Fig. 4, one can see that
the CMAC estimated reliability measures are inside the relia-
bility area calculated from the WPHM. These results verify the
robustness of the CMAC-PEM methodology in estimating ma-
chine reliability.

5 Conclusions

The major content presented in this paper is the proposed
CMAC-PEM methodology for machine reliability modelling.
Our objective is to combine the traditional reliability modelling
method and vibration-based machine condition monitoring tech-
niques to estimate machine reliability. In the paper, a CMAC
neural network-based machine performance estimation model
has been introduced. CMAC-PEM was used to fuse sensory data
and to predict machine reliabilities. Then, the underlying Weibull
reliability model of the machine can be established. The model
provides several reliability statistics, which may be used as basic
information for further predictive maintenance. A bearing deteri-
oration experiment has been conducted to generate a real-world
data set to test the robustness of CMAC-PEM. A validation tool,
the Weibull proportional hazards model, has been used to verify
CMAC-PEM results. In-depth analyses of WPHM on the bearing
data have been provided in the paper.

From this paper, it can be concluded that the CMAC-PEM
methodology is a reliable and robust system for online machine
reliability analysis. Most importantly, CMAC-PEM can realise
the concept of condition-based predictive maintenance.

For future research, besides the implemented vibration trend
indices, other information, such as temperature, pressure, and oil
analysis, can also be added into CMAC input vectors to enrich
the information base. By doing so, an advanced sensor fusion im-
plementation would be a possible extension to the current work.
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